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Abstract. The transition between cubic and tetragonal phases in KMnF3 has been studied by
x-ray diffraction rocking curves and calorimetry. Comparison of the excess entropy with the order
parameterQ obtained from spontaneous strain shows that the mean field relationship1S ∝ Q2

is obeyed to within experimental error. The data are fitted to a Landau free energy expression
1G = 1

2A(T − TC)Q2 + 1
4BQ

4 + 1
6CQ

6, with A = 2.781 J K−1 mol−1, B = −57.63 J mol−1,

C = 574.2 J mol−1, TC = 185.76 K. No significant excess specific heat is found atT � TC .

1. Introduction

Materials with the perovskite structure (or one of its derivatives) occur in a wide range of natural
and technological contexts (Navrotsky and Weidner 1989). The perovskite structure has a num-
ber of potential instabilities, which lead to a diversity of types of phase transition behaviour. The
transitions in this family of materials have been extensively studied for two main reasons. One
reason is their importance in a variety of applications. Another consideration is that, since the
perovskite structure is so simple, these transitions provide a good test for theories of phase tran-
sitions. SrTiO3 has been particularly important in this respect, as reviewed by Cowley (1996).

In geometrical terms, thePm3m–I4/mcm phase transition seen in KMnF3 is identical to
the transition in SrTiO3. The transition involves the condensation of the R25 soft mode at the
point [111] on the Brillouin zone boundary (Minkiewiczet al 1970). This mode is associated
with the rotation of MnF6 octahedra around the [001] axis. The primary order parameter is
thus understood as the rotation angle of these octahedra;Q ∝ φ. In terms of the notation
introduced by Glazer (1972), the tilt system for the transition isa0a0c−.

The phase transition may be identified using a number of different experimental techniques.
Early evidence for the transition (Beckman and Knox 1961, Okazaki and Suemune 1961) came
from spontaneous strain measurements by standard x-ray diffraction methods. The strain is not
large, and improved precision may be obtained by using ‘high resolution/rocking curve’ meth-
ods to measure the splitting between diffraction maxima of different twin domains (Nicholls
and Cowley 1987, Coxet al1988, Gibaudet al1991, Burandtet al1994). A set of superlattice
reflections is associated with thePm3m–I4/mcm transition (Minkiewiczet al 1970), which
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may be used to distinguish the structures of the phases. The use of the intensity of these satellite
reflections to measure the order parameter is more problematic (Burandtet al 1994), since the
domain microstructure in tetragonal KMnF3 is highly variable, even within a single experiment
(Tietzeet al 1981, Hirakawaet al 1997). Experimental data also exist from ultrasonic studies
of the soft mode (Furukawaet al 1970), and Raman spectroscopy (Kapustaet al 1999).

From these studies, it is apparent that the cubic–tetragonal transition in KMnF3 is first
order, though the size of the first order step is not large. Most authors fit their data for the order
parameter to a power law of the formQ ∝ |TC − T |β , and obtainβ values in the range 0.25–
0.32. As Burandtet al (1994) note, this uncertainty is, at least in part, due to the mathematical
difficulty of fitting data for a discontinuous transition to a continuous power law.

Although the crystallographic aspects of the transition are well understood, a complete
thermodynamic description of the experimental data has been more elusive. Two distinct ap-
proaches may be identified, emphasizing the role of critical fluctuations and the mean field
respectively.

The universality class of thePm3m–I4/mcm transition in both SrTiO3 and KMnF3 cor-
responds to a Hamiltonian of a 3D Heisenberg type with a cubic anisotropic part of the soft
modes and their dispersion. The critical exponents for the isotropicn = 3, d = 3 fixed point
were calculated by le Guillou and Zinn-Justin (1980) asβ = 0.365,γ = 1.386.

Even for strong cubic anisotropy the Heisenberg fixed point remains stable (Bruce and
Aharony 1975), but for large dispersion forces the transition becomes first order as the Heisen-
berg fixed point is not accessible (Nattermann 1976, Rudnick 1978). According to this argu-
ment, the difference between the continuous transition observed in SrTiO3 and the first order
transition of KMnF3 is the strength of the cubic anisotropy. Müller and Berlinger (1982) ar-
gued in addition that weak fields (e.g. external stresses along [111]) may change the transition
completely yielding Ising and Potts transitions.

The alternative approach to the theoretical description of the transition is to use a mean
field model, such as Landau theory. Recent studies of SrTiO3 (Saljeet al 1998, Hayward and
Salje 1999) have shown that the various experimental data for the transition are selfconsis-
tently described by a Landau potential. Based on this work, the temperature range over which
criticalities may be observed is less than 1 K. In the case of KMnF3, Stokkaet al (1981) used
Landau theory to analyse the results of a calorimetric experiment, though these authors did
not calculate all the coefficients of the potential. The variation of the order parameter with
pressure in KMnF3 was studied by Åsbrink and Waskowska (1996), who also interpreted the
data with Landau theory.

In this study, we perform calorimetric measurements (latent heat and specific heat) and
high resolution x-ray measurements of the spontaneous strain on a single sample of KMnF3.
Comparison of the spontaneous strain with the latent heat and specific heat is used to confirm
that the strain and the excess entropy are related in the way predicted by a mean field model,
and to determine the coefficients of a Landau potential. The significance of our results is that
we show that both model transitions in the perovskite structure, namely high purity SrTiO3

and KMnF3, follow mean field behaviour with minimal, if any deviations which can clearly
be related to criticalities outside the mean field limit.

2. Experimental methods

2.1. Sample synthesis

The sample was prepared using the Bridgmann–Stockbarger method. The resulting crystal was
approximately cylindrical, with a thickness of 5 mm and circular (001) faces with area 0.8 cm2.
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Figure 1. Temperature dependence of the
specific heat in a pure KMnF3 single crystal
in the vicinity of the cubic–tetragonal phase
transition.

2.2. Calorimetric measurements

The measurements of latent heat and specific heat were performed on a high resolution con-
duction calorimeter, which has been described in detail elsewhere (Gallardoet al 1995). The
apparatus consists of two identical heat fluxmeters, each consisting of 50 chromel–constantan
thermocouples connected in series with wires arranged in parallel lines. Two electrical re-
sistance heaters are used in the system, one situated between each face of the sample and
the fluxmeters. These heaters dissipate a uniform heat on the sample faces or measure the
temperature of the fluxmeter junctions near the sample. The other ends of the fluxmeters are
pressed against a 10 kg bronze cylinder, which acts as a heat sink. This calorimeter block is
suspended within a cylindrical radiation shield, and the whole assembly is then placed in a
hermetic outer case, within which a high vacuum (10−5 Pa) may be produced. The system is
then surrounded by a coiled tube, and placed in an alcohol bath. Liquid N2 circulates through
the coil, and regulates the temperature of the alcohol bath. The large number of thermocouples
used, together with the good thermal stability (due to the system’s large thermal inertia), allow
very small temperature changes to be studied in a stable manner. As a result, it is possible to
change the sample temperature extremely slowly without inducing temperature fluctuations in
the block—a heating or cooling rate of 0.06 K h−1 is quite achievable.

It is also important to note that the system produces two sets of results—the heat flux
and the specific heat. As a result, the specific heat and any latent heat can be determined
independently, but under similar thermal conditions (del Cerroet al 2000).

The specific heat is measured by starting from the steady state obtained when the same
power is dissipated by both resistances. This heat powerW crosses through the fluxmeter,
producing an electromotive forceV in the fluxmeter. The power is then cut off (at a timet0),
andV is integrated up to the timet1 when equilibrium is reached again. The specific heatC

is proportional to the integral ofV with respect tot betweent0 and t1. The increase in the
sample temperature in this measurement process is of the order of 0.06 K. Figure 1 shows the
variation of the specific heat of KMnF3 in the temperature range between 170 K and 200 K.

The latent heat of the transition is measured by heating or cooling the calorimeter at a
constant rate without dissipation in the heaters, and recording the electromotive forceV (t)

in the fluxmeters. The e.m.f. is proportional to heat fluxφ, the integral of which is in turn
proportional to the excess enthalpy of the sample.

The heat flux can have two contributions: one due to the latent heat and another due to the
variation of specific heat with temperature. In an idealized first order transition, the latent heat
would appear as a spike in theφ(t) graph, which would be trivial to separate from the specific
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Figure 2. The problem of separating contributions from latent heat and specific heat in the heat flux.
(a) The idealized situation is that the transition occurs at a single temperatureTTR . In this case,
the latent heat appears as a sharp spike in theφ(T ) graph, and is easy to separate from the specific
heat. (b) In a real experiment, the transition is somewhat smeared in the temperature axis. As a
result, there is a temperature range where the specific heat and latent heat overlap. The resolution
of these two effects creates some ambiguity in the analysis of the calorimetric data for first order
transitions.

heat (figure 2(a)). In reality, the transition occurs over a range of temperatures, with lower and
upper limitsT− andT+. Consequently, the latent heat is smeared out, and so overlaps with the
specific heat contribution (figure 2(b)). This problem is particularly significant in KMnF3, since
the latent heat is not large, and the specific heat shows a strong anomaly close to the transition.

del Cerroet al (2000) show that this ambiguity may be overcome, provided independent
but consistent measurements of the specific heat and heat flux exist. From the specific heat data
(figure 1), we determine the part of the heat flux due to the specific heat contribution,φC . Within
the two-phase region, the temperature dependence ofφC will be complicated by the presence of
two phases in the sample. AsC andφ are measured on a single sample under the same thermal
conditions,φ andφC may be compared directly. The latent heat occurs in the temperature
rangeT− to T+, whereφ andφC do not coincide, which is thus the two-phase field for the
transition. Figure 3(a) showsφ andφC as a function of temperature for KMnF3 being heated
and cooled through the transition. Figure 3(b) shows the part of the heat flux due exclusively
to the latent heat. The area under this curve gives the latent heat associated with the transition.

2.3. X-ray diffraction experiments

The spontaneous strain associated with the phase transition was measured using x-ray rocking
experiments, using a similar method to that used by Chrosch and Salje (1998) to study SrTiO3.
The sample was mounted on a high resolution, two-circle diffractometer (‘X1’ in Locherer
et al 1996) fitted with a cryostat. The splitting of the strong 200 reflection was measured as a
function of temperature between 190 K and 90 K, with (001) as the basal plane and [010] as the
rocking axis (all orientations relative to the cubic crystal axes). Rocking curves were collected
every 5 K for both heating and cooling. Monochromatic Cu Kα1 radiation was used for the
incident x-ray beam, with a small beam width (∼0.2 mm) to minimize beam divergence. The
step size in the rocking angleω was 0.01◦. At eachω position, the intensity–2θ spectrum was
recorded, and the total intensity in the 200 peak (2θ ≈ 43.25◦) was determined by integration.
The rocking curve is the manifestation in reciprocal space of the twin microstructure; each
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Figure 3. (a) Variation of heat flux (φ solid line) with temperature as KMnF3 is heated and cooled
through the cubic–tetragonal phase transition, and the component due to specific heat (φC , broken
line). The upper and lower limits of the temperature range whereφ andφC do not coincide are
marked asT+ andT− respectively. (b) Component of heat flux due to latent heat. The areas under
the two curves are proportional to the latent heats observed on heating and cooling, and are equal.

peak represents a distinct twin domain; the1ω between rocking peaks is the twin angle which
increases with the spontaneous strain.

For the experimental configuration used here, four distinct twin domain orientations can
be observed on tilting around theω axis. Taking the splitting between the highest and lowestω

peaks, we obtain a twin angle1ω as a function of temperature. This twin angle is related to the
ratio of the pseudo-cubic lattice parameters by1ω ∝ (c/a)−1. Thus the rocking experiment
determines the difference of the spontaneous strainse3 − e1. This function is proportional to
the symmetry-adapted strainet of Carpenteret al (1998), and scales as the square of the order
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Figure 4. Twin angle, proportional to the
square of the order parameter, as a function
of temperature in pure KMnF3. The solid
line shows the predictions of a model derived
exclusively from calorimetric measurements,
as discussed in section 4.4.

parameterQ2. The twin angle is plotted as a function of temperature in figure 4.

3. Application of Landau theory to first order transitions

From the generic classical Landau potential

1G = A

2
(T − TC)Q2 +

B

4
Q4 +

C

6
Q6 (1)

the temperature dependence of the square of the order parameter is given by

Q2 = −B +
√
B2 + 4AC(TC − T )

2C
. (2)

For a first order transition, it is convenient to express equation (2) as a function of the
equilibrium transition temperatureTTR;

Q2 = 2

3
Q2

0

{
1 +

[
1− 3(T − TC)

4(TTR − TC)
]1/2}

(3)

whereQ0 is the step in the order parameter atTTR;

Q2
0 =

4A(TC − TTR)
B

(4)

TTR − TC = 3B2

16AC
. (5)

The magnitude of the parameterA describes the scaling between the order parameter and
the excess entropy;

1S = −AQ
2

2
. (6)

Equation (3) can be re-written to describe the temperature dependence of the excess entropy;

1S = 2L

3TTR

{
1 +

[
1− 3(T − TC)

4(TTR − TC)
]1/2}

. (7)

An alternative way of using the specific heat data is to use equation (2) above, noting that
1C = T (∂1S/∂T ). From this, it can be shown that(

T

1CP

)2

= 4B2 + 16AC(TC − T )
A4

. (8)
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In a first order phase transition, there are three distinct temperatures which may be re-
garded (in some sense) as characteristic of the transition. The lowest of these is described as
TC in the above equations; this is the lowest temperature for whichQ = 0 is a minimum inG,
rather than a maximum.TTR is the temperature at whichG for the ferrophase and paraphase
are equal, and so is the temperature at which an equilibrium transformation should occur.
The highest characteristic temperature isT2, which is the highest temperature for which the
ferrophase may exist. Thus the extent of the two phase region on the phase diagram will be
TC 6 T 6 T2. (In a thermodynamically second order transition, these temperatures of these
three conditions coincide.) In a first order transition,T2 is related to the other parameters by

T2 − TC = B2

4AC
T2 − TTR = 3B2

16AC
. (9)

Thus equation (7) may also be expressed as

1S = 2L

3TTR

{
1 +

[
1 +

(T2 − T )
(T2 − TC)

]1/2}
(10)

and equation (8) as(
T

1CP

)2

= 16C(T2 − T )
A3

(11)

or, differentiating (10),(
T

1CP

)2

= 9d(T2 − d/4)2
L2

(T2 − T ) (12)

whered = T2 − TC .
The coefficients of the Landau potential are completely determined byL, T2 andd. L

is measured in the heat flux experiment,T2 is the temperature at which1CP extrapolates to
infinity, sod is fixed from the gradient of(T /1CP )2 againstT , as in equation (12).

4. Data analysis

4.1. Specific heat data

The most reliable data are those for the specific heat anomaly just belowTC . Here the mag-
nitude of1CP is large, and the error in the baseline is relatively small. Figure 5 tests the
validity of equation (8) above, making the initial assumption that the baselineCP0 is a linear
extrapolation of the specific heat at high temperatures. The function(T /1CP )

2 is found to be
linear with temperature up to 185.75 K. As figure 3 above shows, this is the temperature where
the influence of latent heat begins to affect experimental measurements of the specific heat.

The baselineCP0 is expected to display some downward curvature at low temperatures,
though it is notoriously difficult to predict the exact form of this curve with enough precision to
obtain accurate values for1CP = CP −CP0. In figure 6, we assume that(T /1CP )2 remains
linear with temperature, and calculate the form of the baseline consistent with this assumption.
The final baseline is close to the Einstein curve for the phonon spectrum of KMnF3. However,
it is not possible to model the baseline exactly using the simplest forms of the Einstein or
Debye models.

From the analysis of the heat flux curves by del Cerroet al (2000), as summarized in fig-
ures 3(a) and 3(b), the latent heatL has been determined as 0.129(2) J g−1. When the sample
is cooled at 0.06 K h−1, the coexistence region for the paraphase and ferrophase extends from
T+ = 186.15 K toT− = 185.80 K. On heating at the same rate, the coexistence region is from
T− = 185.85 K toT+ = 186.20 K.
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Figure 6. Temperature dependence of specific heat in KMnF3, showing two possible baselines.
A simple linear extrapolation of the data from above the transition (broken line) is of limited use,
since it eventually crosses the experimentalCP curve. One way of determining the curvature of
the baseline is to force1CP to be consistent with some theoretical model. This is done here for
a Landau model of the transition (solid line). Immediately below the transition, the difference
between these two methods is negligible.

4.2. Comparison of entropy and spontaneous strain

Given the latent heat, and the variation of the excess specific heat with temperature, the tem-
perature dependence of the excess entropy is calculated. Since this is proportional toQ2 in a
Landau model, this is then compared with the independently measured spontaneous strainet
(also proportional toQ2 in this transition). Figure 7 shows that the quantities1S andet are
indeed proportional over a wide temperature range.

We may compare this result with the predictions of a criticality model, such as the 3D
Heisenberg model (Le Guillou and Zinn-Justin 1980). If the excess specific heat varies as
|TC−T |−α, then the excess entropy will vary as|TC−T |1−α. Meanwhile, the order parameter
is expected to vary as|TC − T |β . For the 3D Heisenberg (α = −0.12,β = 0.365) model, the
excess entropy is expected to increase more rapidly with|TC − T | than the square of the order
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parameter. These values are not compatible with our experimental observations.

4.3. Calculation of Landau coefficients

We now calculate the coefficients for a Landau potential for KMnF3. From the heat capacity
data, we note thatT2 = 186.28(1) K, and that the gradient of the(T /1CP )2–T line is
−9.465(5)×106 K3 g2 J−2. Note that neither of these quantities depends much on (reasonable)
choices of the baseline. From the heat flux data, we know thatL = 0.129(2) J g−1 (del Cerro
et al 2000). Determination ofTTR is more ambiguous. When the sample is cooled, we expect
TTR = T+, which in this case is 186.15(1) K. For heating, we expectTTR = T−, or 185.85(1) K.
Clearly, these quantities do not agree. However, since only three data are needed to constrain
the 2:4:6 Landau potential, the exact value ofTTR can be ignored at this stage.

Given the experimental values forL, T2, and the gradient of the(T /1CP )2–T line, we
obtainT2 − TC = 0.52 K. Hence,TC = 185.76 K andTTR = 186.15 K, in good agreement
with the analysis of the heat flux data for cooling (though not for heating).

To find the Landau coefficientA, we extrapolate either equation (7) or equation (10) to
T = 0 K. Using this, we find1S(0 K) = 9.21×10−3 J K−1 g−1. HenceA = 0.0184 J K−1 g−1.
SubstitutingL and TTR into equations (4) and (5), we obtainB = −0.3816 J g−1,
C = 3.801 J g−1. The equivalent molar quantities, given 1 mol KMnF3 = 151.04 g, are
A = 2.781 J K−1 mol−1, B = −57.63 J mol−1, C = 574.2 J mol−1. As a final illustration
of the model, the fit line in figure 4 shows the temperature dependence of the order parame-
ter predicted by the model determined from the calorimetric data. This agrees well with the
experimental data for the twin angle (i.e. the spontaneous strain).

5. Discussion

In this study, we have shown that the temperature dependence of both the excess entropy
and the spontaneous strain may be described consistently in terms of a single Landau model.
This result is consistent with earlier analyses of SrTiO3 (Saljeet al 1998, Hayward and Salje
1999), but not with the description of this transition in terms of criticality models. There are
no obvious deviations from mean field behaviour in the x-ray data (which includes data up
to TC − 2 K), or in the heat capacity data (which includes data up to within 0.1 K ofTC).
Significantly, the spontaneous strain is found to be proportional to the excess entropy, which
is a characteristic result of Landau theory.

In addition, the temperaturesTC and TTR correlate remarkably well with the lim-
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its of the coexistence interval for cooling of the sample (TC = T− = 185.8 K, and
TTR = T+ = 186.15 K). When heating the sample, the transition starts somewhat before
TTR is reached (T− = 185.85 K). The reason for this is not entirely clear. It is possible that
non-equilibrium defects and microstructures in the tetragonal phase reduced the stability of this
phase with respect to the cubic phase in this experiment, and so promoted the tetragonal–cubic
transition on heating. There is no measurable difference in the excess entropy between heating
and cooling, and so any such effect must be small. However, the1G between the two phases
nearTC is also small, so defect effects may explain difference between the observed value of
T− (185.85 K) and the expected value (186.15 K) in the heating experiment.

In figure 5, we noted that the specific heat data just betweenTC and 187.75 K deviated from
the linear predictions of Landau theory. This is an experimental problem, related to the onset
of latent heat associated with the first order transition. The temperature above which this effect
occurs correlates well withTC , which is the lowest temperature at which a (non-equilibrium)
transition is possible. No further excess specific heat was found at higher temperatures.
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